Differences in Multiple Groups
Aly Lamuri
Indonesia Medical Education and Research Institute
Overview
oneway.test
in R
)H=[12n(n+1)k∑i=1R2ini]−3(n+1)
H=[12n(n+1)k∑i=1R2ini]−3(n+1)
H∼χ2(k−1)
# CO2 dataset in Rstr(DNase)
## Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 176 obs. of 3 variables:## $ Run : Ord.factor w/ 11 levels "10"<"11"<"9"<..: 4 4 4 4 4 4 4 4 4 4 ...## $ conc : num 0.0488 0.0488 0.1953 0.1953 0.3906 ...## $ density: num 0.017 0.018 0.121 0.124 0.206 0.215 0.377 0.374 0.614 0.609 ...## - attr(*, "formula")=Class 'formula' language density ~ conc | Run## .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> ## - attr(*, "labels")=List of 2## ..$ x: chr "DNase concentration"## ..$ y: chr "Optical density"## - attr(*, "units")=List of 1## ..$ x: chr "(ng/ml)"
DNase
datasetRun
: The assay runconc
: Protein concentrationdensity
: Optical density in the assaywith(DNase, tapply(density, Run, shapiro.test)) %>% lapply(broom::tidy) %>% lapply(data.frame) %>% {do.call(rbind, .)} %>% knitr::kable() %>% kable_minimal()
statistic | p.value | method | |
---|---|---|---|
10 | 0.891 | 0.059 | Shapiro-Wilk normality test |
11 | 0.888 | 0.051 | Shapiro-Wilk normality test |
9 | 0.889 | 0.053 | Shapiro-Wilk normality test |
1 | 0.883 | 0.044 | Shapiro-Wilk normality test |
4 | 0.877 | 0.035 | Shapiro-Wilk normality test |
8 | 0.876 | 0.033 | Shapiro-Wilk normality test |
5 | 0.879 | 0.037 | Shapiro-Wilk normality test |
7 | 0.883 | 0.043 | Shapiro-Wilk normality test |
6 | 0.880 | 0.039 | Shapiro-Wilk normality test |
2 | 0.869 | 0.027 | Shapiro-Wilk normality test |
3 | 0.880 | 0.039 | Shapiro-Wilk normality test |
with(DNase, car::leveneTest(conc, Run))
## Levene's Test for Homogeneity of Variance (center = median)## Df F value Pr(>F)## group 10 0 1## 165
kruskal.test(conc ~ Run, data=DNase)
## ## Kruskal-Wallis rank sum test## ## data: conc by Run## Kruskal-Wallis chi-squared = 0, df = 10, p-value = 1
rstatix::kruskal_effsize(conc ~ Run, data=DNase)
## # A tibble: 1 x 5## .y. n effsize method magnitude## * <chr> <int> <dbl> <chr> <ord> ## 1 conc 176 -0.0606 eta2[H] moderate
dunn.test::dunn.test(DNase$conc, DNase$Run)
## Kruskal-Wallis rank sum test## ## data: x and group## Kruskal-Wallis chi-squared = 0, df = 10, p-value = 1## ## ## Comparison of x by group ## (No adjustment) ## Col Mean-|## Row Mean | 1 10 11 2 3 4## ---------+------------------------------------------------------------------## 10 | 0.000000## | 0.5000## |## 11 | 0.000000 0.000000## | 0.5000 0.5000## |## 2 | 0.000000 0.000000 0.000000## | 0.5000 0.5000 0.5000## |## 3 | 0.000000 0.000000 0.000000 0.000000## | 0.5000 0.5000 0.5000 0.5000## |## 4 | 0.000000 0.000000 0.000000 0.000000 0.000000## | 0.5000 0.5000 0.5000 0.5000 0.5000## |## 5 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000## | 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000## |## 6 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000## | 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000## |## 7 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000## | 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000## |## 8 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000## | 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000## |## 9 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000## | 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000## Col Mean-|## Row Mean | 5 6 7 8## ---------+--------------------------------------------## 6 | 0.000000## | 0.5000## |## 7 | 0.000000 0.000000## | 0.5000 0.5000## |## 8 | 0.000000 0.000000 0.000000## | 0.5000 0.5000 0.5000## |## 9 | 0.000000 0.000000 0.000000 0.000000## | 0.5000 0.5000 0.5000 0.5000## ## alpha = 0.05## Reject Ho if p <= alpha/2
Overview
Q=[12NNk(k+1)k∑i=1R2i]−3N(k+1)
Q=[12NNk(k+1)k∑i=1R2i]−3N(k+1)
Q∼χ2(k−1)
str(warpbreaks)
## 'data.frame': 54 obs. of 3 variables:## $ breaks : num 26 30 54 25 70 52 51 26 67 18 ...## $ wool : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...## $ tension: Factor w/ 3 levels "L","M","H": 1 1 1 1 1 1 1 1 1 2 ...
wp <- aggregate(warpbreaks$breaks, by = list( w = warpbreaks$wool, t = warpbreaks$tension ), FUN = mean)friedman.test(x ~ w | t, data=wp)
## ## Friedman rank sum test## ## data: x and w and t## Friedman chi-squared = 0.3, df = 1, p-value = 0.6
rstatix::friedman_effsize(x ~ w | t, data=wp)
## # A tibble: 1 x 5## .y. n effsize method magnitude## * <chr> <int> <dbl> <chr> <ord> ## 1 x 3 0.111 Kendall W small
Overview
Overview
Overview
Overview
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |